(1) What is the reaction rate in terms of DA? $2A + 3B \rightarrow 4C + 5D$ a) $-\Delta A$ $\frac{-\Delta A}{2\Delta H}$ c) $\frac{\Delta A}{\Delta t}$ $d) - 2\Delta A$ $aA + bB \rightarrow cC + dD$ $Rate = -\frac{1}{\alpha} \frac{\Delta H}{\delta t}$ $Rate = -\frac{1}{2} \frac{\Delta A}{\Delta t}$ Rate = - JA 2 St

(2) What is the reaction rate
in terms of
$$\Delta C$$
?
 $2A + 3B \rightarrow 4C + 5D$
(a) $+ \frac{\Delta C}{\Delta t}$
(b) $+ \frac{4\Delta C}{\Delta t}$
(c) $+ \frac{\Delta C}{4\Delta t}$
(d) $- \frac{4\Delta C}{\Delta t}$
 $Rate = + \frac{1}{4} \frac{\Delta C}{\Delta t}$
 $Rate = + \frac{\Delta C}{4\Delta t}$

For the following reaction,
(a) express the rate in terms
of changes in
$$[H_2]$$
, $[O_2]$, and
 $[H_2O]$ with respect to time, and
(b) find the rate at which $[H_2O]$
is increasing when $[O_2]$ is
decreasing at 0.23 mol/L·s.
 $2H_{2}(g) + O_{2}(g) \rightarrow 2H_2O_{2}(g)$
(a) $Rate = -\frac{\Delta[H_1]}{2\Delta t} = -\frac{\Delta[O_2]}{\Delta t} = \pm \Delta[H_2O]}{\Delta t} = -(-0.23 \frac{mol}{LS})$
(b) $\pm \Delta[H_2O] = -\Delta[O_2] = -(-0.23 \frac{mol}{LS})$
 $\Delta (H_2O) = 2(0.23 \frac{mol}{LS}) = 0.46 \frac{mol}{LS}$

(9) In the combustion of nethang,
which reactant has the greatest
rate of disappearance?

$$CH_{tig} + 2O_{2ig} \rightarrow CO_{2} + 2H_{2O}$$

(g)
(h) $CH_{4} - \frac{D[CH_{4}]}{Dt} = -\frac{1}{2} \frac{D[O_{2}]}{St}$
(h) $O_{2} - \frac{D[CH_{4}]}{Dt} = -\frac{1}{2} \frac{D[O_{2}]}{St}$
(h) $O_{2} - \frac{D[CH_{4}]}{Dt} = \frac{D[O_{2}]}{St}$
(h) $O_{2} - \frac{D[CH_{4}]}{St} = \frac{D[O_{2}]}{St}$
(h) $O_{2} - \frac{D[O_{2}]}{St} = \frac{D[O_{2}]}{St}$
(h) $O_{2} - \frac{D[O_{2}]}{St} = \frac{D[O_{2}]}{St}$
(h) $O_{3} - \frac{D[O_{3}]}{St} = \frac{D[O_{3}]}{St}$
(h) $O_{3} -$

the reaction proceeds ASSuming forward, which of the is not a following graphs possible graph of concentration for vs. time a reactant?

 $aA + bB \longrightarrow cC + dD$

Assuming that each graph has the same concentration and time axes, which graph has the greatest initial rate of disappearance of (cactant)

Kate Law

· Rate = K[A] [B] > & = constant (specific (xn) to -> m and n = exponents determined by the order of the reaction -> A and B = reactants $aA \rightarrow bB$ order · Zero -> rate doesn't change as (A) doubles $Rate = k[A]^{\circ} = k(i) = k$ Rate = K

· First order

$$\Rightarrow$$
 rate doubles as [A] doubles
Rate = k[A]'
Rate = k[A]

· Second order

$$NO_{2} + CO \longrightarrow NO + CO_{2}$$

$$Fate = k (NO_{2})^{m} [CO]^{n}$$

Experiment	Initial rute (mol/L.5)	Initial (NO ₂] (mol/L)	Initial (CO) (mol/L)
l	0.0050	0,10	0.10
2	0.080	0.40	0.10
3	0.0050	0.10	0.20

