2) Silver
$$(z = 47)$$
 has two
haturally - Occuring isotopes:
107Ag and 109Ag. Calculate
the atomic mass of Ag
given the following:
Isotope Mass (AMU) Abundance
107Ag 106.90509 51.84%.
109Ag 108.90476 48.16%.
.5184 (106.90509) = 55.42 amu
.4816 (108.90476) = 52.45 amu
55.42 + 52.45 = 107.87 amu

(

Look at the positions of the following elements on the periodic table:

Silicon, Phosphorus, Cobalt, Neon, Bromine, sodium

i A	1																18 VIIIA
Hydrogen 1.008	2 IIA											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	Helium 4.002602
³ Li	Beryllium											5 Boron	6 C Carbon	7 Nitrogen	8 O Oxygen	9 Fluorine	Neon
¹ Na	¹² Mg											13 AI	¹⁴ Si	15 P	16 S	18.998403163	¹⁸ Ar
Sodium 22.98976928	Magnesium 24.305	3 IIIB	4 IVB	5 VB	VIB	VIIB	VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	Aluminium 26.9815385	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948
¹⁹ K	°Ca	Sc	²² Ti	²³ V	²⁴ Cr	^{²⁵} Mn	Fe	²⁷ Co	²⁸ Ni	°Cu	[®] Zn	Ga	Ge	³³ As	ืSe	³⁵ Br	^³ Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	Cobalt 58.933194	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Selenium 78.971	Bromine 79.904	Krypton 83.798
³⁷ Rb	^³ Sr	³⁹ Y	[®] Zr	[®] Nb	Mo	Tc	^⁴ Ru	็Rh	^⁴ °Pd	Âg	[®] Cd	[*] In	ຶSn	ຶSb	те	53	́Хе
Rubidium 85.4678	Strontium 87.62	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112.414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
⁵⁵ Cs	°Ba	57 - 71 Lanthanoids	⁷² Hf	зта	⁷⁴ W	[™] Re	⁷⁶ Os	" Ir	Pt	⁷⁹ Au	в	^{®1} TI	^{®2} Pb	Bi	Po	°At	[™] Rn
Caesium 132.90545196	Barium 137.327		Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	Rhenium 186.207	Osmium 190.23	Iridium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.592	Thallium 204.38	Lead 207.2	Bismuth 208.98040	Polonium (209)	Astatine (210)	Radon (222)
⁸⁷ Fr	°₿Ra	89 - 103 Actinoids	[™] Rf	¹⁰⁵ Db	Sg	Bh	Hs	Mt	¹¹⁰ Ds	"Rg	¹¹² Cn	[™] Nh	¹¹⁴ FI	Mc	¹¹⁶ Lv	¹¹⁷ Ts	[™] Og
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (209)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

57 La Lanthanum 138.90547	58 Cerium 140.316	59 Praseodymium 140.50766	60 Nd Neodymium 144.242	Promethium	62 Sm Samarium 150.36	63 Europium 151.964	64 Gadolinium 157.25	65 Tb Terbium 158,92535	⁶⁶ Dysprosium 162.500	67 Ho Holmium 164.93033	68 Erbium 107.259	69 Tm Thulium 168.93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
Actinium (227)	90 Th Thorium 232.0377	Protactinium 231.03588	92 Uranium 238.02891	93 Np Neptunium (237)	Plutonium (244)	95 Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Californium (251)	99 Es Einsteinium (252)	100 Fermium (257)	Mendelevium	Nobelium (259)	Lawrencium

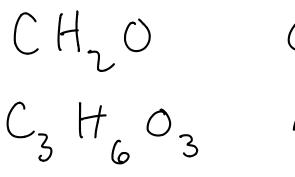
Name the following anions, then give the name and formula of the acid derived from each:

- a) CI^{-} Chloride b) CN^{-} Cyanide c) SO_{4}^{2-} sulfate
- HCI -> hydrochloric acid HCN -> hydrocyanic acid H₂SOy -> sulfuric acid

١	N.	ī+	60	g	ev	1	C	<i>,</i>	ØХ	:d	le		î	5	-	foi	トゥ
Y	NC	zv	١Y		Y	1,17	400	09	e V	N		d	נ די ב	Xŕ	J	e	
V	NC	le		иl	les	5		Cu	(R	•	f	- -01	٨v	nd	1	<i>i</i> -	1
C	Zr	۱	8	$\dot{\cdot}$	12	9		¢	Sa	YY	P	le		D	Ŷ		
ł	7~1				ja	J	7				•						
1 H Hydrogen				()	•	4					13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	¹⁸ VIIIA ² He Helium
3 Lithium 6.94	⁴ Be Beryllium 9.0121831											5 B Boron 10.81	6 C Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	9 Fluorine 18,998403163	10 Neon 20,1797
Na Sodium 22.98970928	Magnesium 24.305	3 IIIB 21	4 IVB	5 VB 23	6 VIB	7 VIIB 25	8 VIIIB 26	9 VIIIB	10 VIIIB	11 IB 29	12 IIB 30	Aluminium 25.9815385 31	Silicon 28.085	Phosphorus 30.973761998	Sulfur 32.06	Chlorine 35.45	Argon 39.948 36
K Potassium	Calcium 40.078	Scandium 44.955908	Titanium 47.867	V Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Fe ss.#45	Cobalt 58.933794	Nickel 58.6934	Cu Copper 63.546		Gallium 69.723	Germanium 72.630	Arsenic 74.921595	Se Selenium 78.971	Bromine 79.904	Krypton 83.798
350703	38	³⁹ V	°r	Nb	Mo	⁴³ Tc	Ru	⁴⁵ Rh	Palladium	⁴⁷ Ag	Cadmium	49 Indium	[®] Sn	Sb Antimony	Tellurium	53	⁵⁴Xe
37 Rb	Sr	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Huthenium	Hhodium	Palladium	- Chinese	Cadmium	in concern	100	Antimony	Tellunium	loging	Xenon
³⁷ Rb					74 Tungsten	75 Re Rhenium	Ruthenium 101.07 76 OS Osmium	77	78 Platinum 195.084	10728682 79 Au Gold	80 Hg Mercury	81 Thallium	Tin 118.710 82 Pb Lead	83 Bismuth	84 Polonium	85 Astatine	Xenon 131.293 86 Rn Radon

	57 La Lanthanum 138.90547	58 Cerium 140316	59 Pr Praseodymium 140.90766	60 Nd Neodymium 144.242	Promethium	62 Sm Samarium 150.36	63 Europium 151,964	64 Gd Gadolinium 15725	65 Tb Terbium 158,92535	by Dysprosium	67 Ho Holmium 164,93033	68 Erbium 167.259	69 Tm Thulium 168,93422	70 Yb Ytterbium 173.045	71 Lu Lutetium 174.9668
NOZ	Actinium (227)	90 Th Thorium 232.0377	Protactinium 23103588	92 Uranium 238.02891	P3 Np Neptunium (237)	Plutonium (244)	95 Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Californium (251)	99 Es Einsteinium (252)	Fermium (257)	Mendelevium	Nobelium (259)	Lawrencium

MM = MM + MM $NO_{1} N + NM$ 20 $= 14.01 \frac{g}{mo} + 2(16) \frac{g}{mo}$ = 46.01 mol Mols $NO_2 = \frac{8.92911001}{146.018} = 0.194$ 146.018 mols NO_2


Molecs $NO_2 = 0.194 \text{ mots} | 6.022 \times 10^{23} \text{ molecs}$ $= 1.17 \times 10^{23} NO_{0}$ molecules mass of NO2 Given mols of Noz Avagadros # molecules of NO2 of the sample in

Mass Density = 2.14 H Volume 9 Cm³ 2649 CO2 180 g Glucose \rightarrow 4 192 g oxygen 1089 water 372 g 372 g HZO

ZH ' Oz 14 6 6°C 12 amu \rightarrow 12 <u>g</u> mol $A + B \rightarrow C$ $A \times Z$ Ca^{2t} Bo Ca Boz

 H_2O H:O:HH H

2.82 g Ata | 1 mol Na 222.99 g Na = .123 mol 4.35 g CT 1 mol Cl 35.45 g CT = .123 mol .123 7.83 g t 1 mol 0 = .489 mol $Na_{1}Cl_{1}O_{4} = Naclo_{4}$

EF MF