

## Pre-Health Post-Baccalaureate Program CHM2210 Study Guide & Practice Problems

**Topics Covered:** 

Constitutional Isomerism in Alkanes
Nomenclature of Alkanes

Created by Isaac Loy

#### Alkanes: An Overview

-> Alkanes are part of a larger class of molecules called hydrocarbons

-> Hydrocarbons are organic molecules which contain only carbon and hydrogen

-> Alkanes are saturated hydrocarbons, meaning that they contain no pi bonds and the max amount of hydrogens possible

Ex: H H H - C - C-H H H H Saturated unsaturated (max. number of hydrogens)

### Constitutional Isomerism

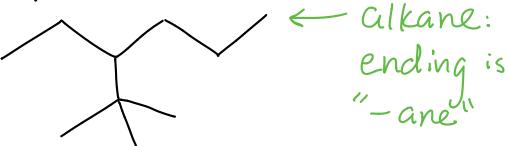
Constitutional isomers

are molecules which have
the same molecular formula
but different structures

Ex:

C4H10

Butane


Cy HIO

2-methyl propane

## Nomen clature and IUPAC

-> How to name a molecule

1) Identify the highest priority functional group in the molecule



2 Identify the longest carbon chain in the molecule. If there are multiple carbon chains of the same length, choose the chain with the greater number of substituents.

Count in such a way that the first encountered substituent has a lower number

| Chain length | prefix<br>meth- |
|--------------|-----------------|
|              | meth-           |
| 2            | eth-            |
| 3            | prop-           |
| 4            | but-            |
| 5            | pent-           |
| 6            | hex-            |
| 7            | nept-           |
| 8            | oct-            |
| 9            | non-            |
| 10           | dec-            |
|              |                 |

Six - C
pacent
chain:
prefix
is "hex-"

3) Identify substituents and name them based on their functional group and position.

2-C alkane

substituent

on third

carbon:

"3-ethyl"

"2,2-dimethyl"

# (4) Put it all together by using the formula:

sub.-sub. prefix FG ending

If multiple substituents are present (such as in this example), use alphabetical order to determine which sub-stituent comes first.

Note: di-, tri- does not factor into alphabetizing!

3-Ethyl-2,2-dimethylhexane

#### Substituents Common Alkyl $-CH_3$ > Methyl - CHZCH3 -> Ethyl - CHZCHZCH3 -> Propyl -> Isopropy/ - CH CH3 (1-methylethyl) -> Butyl — СНСНСН*СН*3 -> Isobuty/ CH2 CH CH3 (2-methy/propy1) -> Sec-buty/ (1-methylpropyl) CHCH2 CH3 $CH_3$ $CH_3$ -> tect-butyl (1,1-d:methylethyl) CH<sub>3</sub>