UF UNIVERSITY of FLORIDA

Pre-Health Post-Baccalaureate Program PHY2053 Study Guide & Practice Problems

Topics Covered:

Circular Motion Circular Apparent Weight Gravity and Orbits

Created by Isaac Loy

) A CD has a diameter of 120 mm and spins at 540 RPM.

1

acceleration !

a) Draw the FBD (looking straight at the fromt of the car).

b) At what speed can the racecar take this turn with no assistance from friction?

Orbital Motion

 $\rightarrow \vee$

Velocity of orbit:

$$a = \frac{F_{net}}{m} = \frac{w}{m} = \frac{mg}{m} = g$$

$$a = \frac{v_{orbit}}{r}$$

$$g = \frac{v_{orbit}}{r} \Rightarrow v = \sqrt{rg}$$

$$\rightarrow$$
 Period of orbit:
 $v = \frac{d}{t}$
 $\Rightarrow t = \frac{d}{v} = \frac{2\pi r}{\sqrt{rg}} = 2\pi \int \frac{r}{g}$

Newton's Law of Gravity

$$\rightarrow$$
 Every object in the
universe attracts every
other object
 \rightarrow The force is directly
proportional to the
products of the masses
 \rightarrow Gravitational Force, Fg:
 $F_{1m2} = F_{2m1} = \frac{G_1 m_1 m_2}{r^2}$
where $G = 6.67 \times 10^{-11} \frac{N \cdot m^2}{kg^2}$
 \rightarrow This is an inverse -
Square relationship!
 \rightarrow g ("litte g") of a planet:
 $g_{planet} = \frac{G_1 m_1 m_2}{R^2}$

What is the gravitational force of the earth (mass of 5.98 × 10²⁴ kg and radius of 6.37 × 10⁶ m) on a 60 kg person?

$$\frac{\text{Solutions}}{\text{D}} = 2\pi fr$$

$$f = \frac{540 \text{ fev}}{min} \times \frac{1}{605} = 9 \text{ s}^{-1}$$

$$r = 0.06m$$

$$v = 2\pi fr = 2\pi (9)(0.06) = 3.4m/s$$

$$b) a_c = \frac{v^2}{r}$$

$$a = (2\pi f)^2 r = 190 \text{ m/s}^2$$

b)
$$\Sigma F_{y} = n\cos\theta - \omega = 0$$

 $n\cos\theta - \omega = 0$
 $n\cos\theta = \omega$
 $n = \frac{\omega}{\cos\theta} = \frac{mq}{\cos\theta}$
 $\Sigma F_{x} = n\sin\theta = \frac{mv^{2}}{r}$
 $\left(\frac{mg}{\cos\theta}\right)\sin\theta = \frac{mv^{2}}{r}$
 $g + an\theta = \frac{v^{2}}{r}$
 $\sqrt{gr+an\theta} = \sqrt{v^{2}}$
 $v = \sqrt{gr+an\theta}$
 $v = \sqrt{35(9.8)(4ant5)}$
 $v = 9.6 m/s$

F = W = mg = 60(9.8) = 588N

Don't overthink the problem!